C. D. G. Linhares, J. R. Ponciano, J. G. S. Paiva, L. E. C. Rocha and B. A. N. Travençolo, "DyNetVis - An interactive software to visualize structure and epidemics on temporal networks," 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), The Hague, Netherlands, 2020, pp. 933-936, doi: 10.1109/ASONAM49781.2020.9381304.
The study of complex networks, especially temporal networks, increased over the last years. Understanding patterns, trends, and anomalies in these networks, as well as simulating and analyzing dynamic processes (e.g., infection spread dynamics in social networks), are not trivial tasks. Information Visualization techniques offer significant potential to assist the user in these analyses. This paper presents an extended version of Dynamic Network Visualization (DyNetVis), a freely available and open-source interactive software to perform visual analysis of temporal networks. It provides four visualization techniques, structural, temporal, matrix, and community layouts, and a number of state-of-the-art methods to interact with each of these layouts. DyNetVis also implements dynamic processes, including standard epidemic models. It is a computational tool to study and explore networks in diverse domains.
https://doi.org/10.1109/ASONAM49781.2020.9381304
@INPROCEEDINGS{9381304,
author={Linhares, Claudio D G and Ponciano, Jean R and Paiva, Jose Gustavo S and Rocha, Luis E C and Travençolo, Bruno A N},
booktitle={2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)},
title={DyNetVis - An interactive software to visualize structure and epidemics on temporal networks},
year={2020},
volume={},
number={},
pages={933-936},
doi={10.1109/ASONAM49781.2020.9381304}}
Linhares, C. D. G., Rocha, L. E. C., Paiva, J. G. S., and Travençolo, B. A. N. (2017). Dynetvis: A system for visualization of dynamic networks. Symposium on Applied Computing, pages 187–194.
The concept of networks has been important in the study of complex systems. In networks, links connect pairs of nodes forming complex structures. Studies have shown that networks not only contain structure but may also evolve in time. The addition of the temporal dimension adds complexity on the analysis and requests the development of innovative methods for the visualization of real-life networks. In this paper we introduce the Dynamic Network Visualization System (DyNetVis), a software tool for visualization of dynamic networks. The system provides several tools for user interaction and offers two coordinated visual layouts, named structural and temporal. Structural refers to standard network drawing techniques, in which a single snapshot of nodes and links are placed in a plane, whereas the temporal layout allows for simultaneously visualization of several temporal snapshots of the dynamic network. In addition, we also investigate two approaches for temporal layout visualization: (i) Recurrent Neighbors, a node ordering strategy that highlights frequent connections in time, and (ii) Temporal Activity Map (TAM), a layout technique with focus on nodes activity. We illustrate the applicability of the layouts and interaction functionalities provided by the system in two visual analysis case studies, demonstrating their advantages to improve the overall user experience on visualization and exploratory data analysis on dynamic networks.
https://doi.org/10.1145/3019612.3019686
@inproceedings{Linhares:2017:DSV:3019612.3019686,
author = {Linhares, Claudio D. G. and Traven\c{c}olo, Bruno A. N. and Paiva, Jose Gustavo S. and Rocha, Luis E. C.},
title = {DyNetVis: A System for Visualization of Dynamic Networks},
booktitle = {Proceedings of the Symposium on Applied Computing},
series = {SAC '17},
year = {2017},
isbn = {978-1-4503-4486-9},
location = {Marrakech, Morocco},
pages = {187--194},
numpages = {8},
url = {http://doi.acm.org/10.1145/3019612.3019686},
doi = {10.1145/3019612.3019686},
acmid = {3019686},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {complex networks, dynamic graph visualization, dynamic networks, recurrent neighbors, temporal activity map},
}
2023
2022
A Visualization Approach for Simulating and Analyzing Infection Spread Dynamics Using Temporal Networks
Jean R. Ponciano, Gabriel P. Vezono, Claudio D. G. Linhares
Journal of Information and Data Management, 2022
Combining Clutter Reduction Methods for Temporal Network Visualization
Jean R. Ponciano, Claudio D. G. Linhares, Luis E. C. Rocha, Elaine R. Faria, Bruno A. N. Travençolo
ACM/SIGAPP Symposium On Applied Computing (SAC), pp. 1748-1755, 2022
2021
Simulating and visualizing infection spread dynamics with temporal networks
Jean R. Ponciano, Gabriel P. Vezono, Claudio D. G. Linhares
Brazilian Symposium on Databases (SBBD), pp. 37-48, 2021
Published | Presentation (in Portuguese)
A comparative analysis for visualizing the temporal evolution of contact networks: a user study
Claudio D. G. Linhares, Jean R. Ponciano, Jose Gustavo S. Paiva, Bruno A. N. Travençolo, Luis E. C. Rocha
Journal of Visualization, 2021
A streaming edge sampling method for network visualization
Jean R. Ponciano, Claudio D. G. Linhares, Luis E. C. Rocha, Elaine R. Faria, Bruno A. N. Travençolo
Knowledge and Information Systems, 2021
2020
Visual analysis of contact patterns in school environments
Jean R Ponciano, Claudio D. G. Linhares, Sara L. Melo, Luciano V. Lima, Bruno A. N. Travençolo
Informatics in Education, 2020
Visual analysis for evaluation of community detection algorithms
Claudio D. G. Linhares*, Jean R. Ponciano*, Fabíola S. F. Pereira, Luis E. C. Rocha, Jose Gustavo S. Paiva, Bruno A. N. Travençolo
Multimedia Tools and Applications, 2020
2019
A Scalable Node Ordering Strategy Based on Community Structure for Enhanced Temporal Network Visualization
Claudio D. G. Linhares, Jean R. Ponciano, Fabíola S. F. Pereira, Luis E. C. Rocha, Jose Gustavo S. Paiva, Bruno A. N. Travençolo
Computers & Graphics, 2019
Published | Presentation (at SIBGRAPI 2019)
Visualisation of structure and processes on temporal networks
Claudio D. G. Linhares, Jean R. Ponciano, Jose Gustavo S. Paiva, Bruno A. N. Travençolo, Luis E. C. Rocha
Book Chapter at Temporal Network Theory Editors: Petter Holme, Jari Saramäki. Springer, 2019
2017
(Portuguese) Análise temporal de uma rede de contato hospitalar utilizando técnicas de visualização de informação
Claudio D. G. Linhares, Jean R. Ponciano, Luis E. C. Rocha, Jose Gustavo S. Paiva, Bruno A. N. Travençolo
Brazilian Symposium on Computing Applied to Health (SBCAS) [XVII Workshop de Informática Médica], pp. 1794-1803, 2017
Published (in Portuguese)